Visualizing MBTA Data Mike Barry and Brian Card - June 12th 2014
http://mbtaviz.qithub.io notes: http://mbtaviz.github.io/handout.pdf

Background

This is an outline of the design and implementation process to create several interactive visualizations using the real time data feed provided by the
MBTA and other data sources. The visualizations focus on the performance and behavior of the subway system which differs from traditional train
visualizations that focus on the train schedule. We introduce several visualizations characterizing the schedules of the riders on the T, the trains and
how the trains interact with each other, and the correlation between congestion and delay on the train system. The main focus is trying to
understand the behavior of the system. We tried to answer questions like when and where are the trains crowded or delayed at different points in the
system? How do special events affect congestion and delay? How does my commute change from day to day or compare to the commutes of
others? This report shares some of the answers to these questions as well as the techniques to come up with those answers.

The Subway System and Data

The MBTA provides data for the red, orange and blue lines, but not green or silver. We used the MBTA’s map of .
the subway system http://www.mbta.com/schedules _and maps/subway/ as the basis for the minimalist subway _

map that you see to the right which emphasizes these lines. Data is provided in JSON format from the MBTA and e

contains the current location of each train as well as the predicted time to the next stop.) /

Visualization Tasks .
The visualizations focus on answering the following questions: / .
e When and where are the trains crowded or delayed? A |
e How do snowstorms or special events affect the train system? / {
e How congested or delayed is my route? ¢ ¢

Existing Works
Below is a sampling of existing train visualizations. From left to right, Etienne-Jules Marey’s schedule from 1885 [1], Bret Victor’s Bart Widget for trip
scheduling [2], State of California Department of Transportation report on ridership [3], metropolitan.io a visualziation of the Paris train system [4].

Surﬂmer Weekday Ru'lershlp Pattem SFY08 a

.- w\ i \ 5
m“ aDaly City 12:39
ago in 26 mir Ot ‘
12:1¢ _I . \
in3 mi it] [
N J ;m ‘M\m ..J\, .«
12:23 Daly City 12:54 :UMM

H
XX H
*TT

Both Marey and Victor focus on scheduling and not on train system performance. Tufte [5] provides many visualizations of train schedules, all based
off of Marey’s original design. The State of California also applies Marey’s layout and additionally encodes the number of riders on each segment
over the year. Metropolitian.io is based of of similar data to what the MBTA provides but uses different visualization techniques.

Key Influences and Design Decisions

Bret Victor's 2011 essay Up and Down the Ladder of Abstraction [6] is a major influence for the design of this project. Victor’s insights on how people
understand and interact with visualizations, his concepts on understanding systems through levels of abstractions, and even the structure and layout
of this essay all served as influences. The visualizations all tie back to maps of the subway which is the viewer’s mental model of the system and
use tight feedback loops and interactive links inspired by Victor. Tufte was also a major influence, several of his insights such as fully Integrate
words, numbers, and images, tips to show mechanism and causality, and suggestions to annotate liberally were taken into consideration in the
design process.

Prototypes

The project started with more than a dozen mock-ups, a sample of which are shown below. Of these 6 to 8 made it into the prototype phase where a
sample was made with real data. Prototypes were invaluable in validating ideas and finding trends in the data to explore further. Several ideas such
as the congestion and delay visualization only came after significant investment in prototypes.

Mockup Prototype Final Implementation
1A‘M %M SA‘M 7)’I\M BA‘M H)"\M 1P‘M .‘APIM EP‘M 7P‘M QP‘M HIPM
Feb3 - #
4 Tue 433 slow

Febd m -~ ~
Wed

Feb5 .
m - A

Fri
Feb 7 - .

Sat
Feb8

Sun
. Feb 9

Monday 2/3 5:50 pm 5:42 pm on Mon Feb @

http://www.google.com/url?q=http%3A%2F%2Fmbtaviz.github.io&sa=D&sntz=1&usg=AFQjCNFi1HgqVsN29Bs8IAh5XIBlPKlMIw
http://www.google.com/url?q=http%3A%2F%2Fmbtaviz.github.io%2Fhandout.pdf&sa=D&sntz=1&usg=AFQjCNEyhWp1gngr2EcOpreX2-_07UqUGg
http://www.google.com/url?q=http%3A%2F%2Fwww.mbta.com%2Fschedules_and_maps%2Fsubway%2F&sa=D&sntz=1&usg=AFQjCNFbFbWhezIFIWsXnQ_Nj6lnnCtUog

Entrances and Exits mockups, prototypes, and final implementation Two of many unused mockups.

Quincy Center

Erom tedaV) s
v husbin Actalt :

[TTT
Tl
[TTT
5
°

! i H n : '
6c 'l 0 i i i R t———{ U
‘ South Station
i il IE IE et S——t |
_— I oI oIm 7
r L B 1 L B] - m
=n T I3 I3
o i1 I3 I3
. g Wesksay hug Weok Two of several unused prototypes. The prototype on the left show congestion
< e e = »« and transit times together which helped us gain an understanding of our data
eoa_ > ° - T ‘e set. The one on the right shows transit times from each stop, a precursor to
< - w o [T . . .
e w — the Your Commute visualization.
T O3E 3 ¥
n mew = = 2 i | =z
i ottt o AR o thron BES Hh
a fter getting off the other parts of the ci l
— 1 -H
= e " 1
= = = = = = E 4 |*
> ar mE mE mn - -
N : H H . H HE
Sz shaws tnsie envics on average aay I L z [='= : 1"I 5 |
Like South Station, Downtown Crossing is rily a work destination, but it does not experience the —_

pri
o per cay. commuter Tl burap 1 entrances n the morming

Implementation
Our visualizations use D3.js to render SVG in the browser. Node.js scripts process the raw data into JSON files which drive the visualizations.

Collaboration Tools

We used bitbucket (https://bitbucket.org/) for private code sharing and task management and GitHub Pages for hosting our compiled static
HTML/CSS/JS/JSON files. Google Docs and Google Drive proved invaluable for collaboratively iterating on design/implementation ideas and Twitter
was useful for gathering feedback from people we didn't know who share a common interest in data visualization.

Weekends

HTML/CSS/IS '
in the browser
curl redline > redline.json d3.json{‘data.json’,
function (data) {

. . . President's Day Mike's Laptop died
Raw Data ————» Clean Data —— Visualization Data
0GB 200MB < 1MB gzipped !
node merge and clean.js node extract feature.js
L I
Visualization Pi pellne Hourly raw data volume per day and week

Gathering Data

We started trying to gather data using hosted Google App Scripts to pull the data and put it into a Google Spreadsheet every minute. After a few days
we found that their service quotas would not allow us to do this for a whole month, so we resorted to using our own hardware. We wrote simple bash
scripts and scheduled them using cron jobs on old laptops and ran these in parallel for the month of February to get the realtime data files. We also
pulled the MBTA GTFS zip file which contained the scheduling data for all trips and worked with a contact at the MBTA to get per-minute entry and
exit counts at each station from their turnstile data.

Merging and Cleaning Data

We experimented with python, scala, and node.js for data pre-processing. Python was an order of magnitude slower than scala or node.js which
were comparable. Since only one of us was comfortable with Scala and we both knew JavaScript, we chose node.js for continued work. We found
the bulk of the time spent running our scripts was from opening files from disk (12 files per minute of gathered data) so our preprocessing scripts
merged the two datasets, removed redundant data, and wrote the data out to hourly gzipped data files with a single json blob per line, for example
redline/yyyy/mm/dd/hh.json.gz. This gave the optimal performance for downstream feature-extraction scripts, while still allowing us to
process date ranges at hour granularity.

Extracting Visualization Data Files

We wrote a node.js script for to generate a minimal JSON data file for each visualization embedded within our larger web page with the goals of
minimizing file size and reducing the amount of work done in the browser at runtime. Aimost every script ran inside a reusable helper that took a date
range, opened the necessary . json. gz files and called a function with each line of that file.

Building the Web App

The web application is a single HTML file with descriptions and explanation surrounding placeholder empty <div> elements for our visualizations.
Our JavaScript files load at the end, read in the data files, render SVG dynamically into the placeholders, and setup listeners to handle interaction.
We used a few open source projects to make development easier including D3.js (http://d3js.org) for mapping our data to DOM elements that create
the visualization, underscore.js (http://underscorejs.org) for collection manipulation, jQuery (http://jquery.com) for additional DOM manipulation
utilities, moment.js (http://momentjs.com) for date and time formatting, and d3-tip (http:/labratrevenge.com/d3-tip) for creating simple tooltips. We had
had to solve several problems along the way, most of which dealt with scaling common D3 design patterns from a single page rendered from a single
data file to a single page with several distinct visualizations rendering data from many data files.

https://www.google.com/url?q=https%3A%2F%2Fbitbucket.org%2F&sa=D&sntz=1&usg=AFQjCNE2kjqH0kzovtwFVrJpK6k4j8WN4g
http://www.google.com/url?q=http%3A%2F%2Fd3js.org&sa=D&sntz=1&usg=AFQjCNEOj7G19Lrx2IKZoyjb9FSuVi1jig
http://www.google.com/url?q=http%3A%2F%2Funderscorejs.org%2F&sa=D&sntz=1&usg=AFQjCNHlk0FMhgG9fCN2yhN-Y-3Si9rYvA
http://www.google.com/url?q=http%3A%2F%2Fjquery.com&sa=D&sntz=1&usg=AFQjCNFPZE_S2dKTU1HWh6m5dRnO4YBYRg
http://www.google.com/url?q=http%3A%2F%2Fmomentjs.com&sa=D&sntz=1&usg=AFQjCNGzisk0XrYIioLhWtyWLUwJVjCSAw
http://www.google.com/url?q=http%3A%2F%2Flabratrevenge.com%2Fd3-tip%2F&sa=D&sntz=1&usg=AFQjCNFSY2h0tTRsgKrcsWN2iC1cylHsHA

decoupling our visualizations Our primary concern was making
sure our visualizations were separate and did not interact in undesired
ways when placed on the same page. We wrote each in a separate file
and each visualization got its own copy of the data it needed. To
ensure our styles were scoped to a single visualization, we used the
Less CSS preprocessor (http://lesscss.org), which allowed us to nest
selectors and ensure that all rules for a visualization would apply only
inside that section of the page. To share any JS and CSS code we
explicitly put it into “common” files.

data loading Since we needed to load many data files and render
several different visualizations we created a utility that requests several
files asynchronously and coordinates progress and completion events,
bubbling them up to user-defined listeners

VIZ.requiresData ([

'json!data/filel.json', 'json!data/file2.json’
1) .progress (function (percent) {

d3.selectAll (".progress") .text ('Loading data...
}) .onerror (function () {

d3.selectAll (".progress") .text ('Failed to load data’);
}) .done (function (dataFromFilel, dataFromFile2) {
// use data
1

' + percent + '%');

browser compatibility Underscore, D3, and jQuery
work across modern browsers and we used an es5/6
shim to let use use newer language features in older
browsers. Still, ie8 does not support SVG. Instead of
bending over backwards to support them, we used
phantomjs (http://phantomjs.org) to render our page to a
png file and show that instead.

<!--[if 1t IE 9]>
 —

<![endif]-->

<!--[if gte IE 9]><!-->
The visualization

<!--<![endif]-->

fonts We chose Helvetica for our sans-serif font to match
the MBTA'’s sign style. For our serif font, we wanted to go
with Garamond but after some reading learned that
Georgia is better since it is optimized for computer
screens, whereas Garamond is optimized for print.

linked text Since our visualizations are embedded in a
document that describes them, we make heavy use of
interactive links in the paragraphs. Most of them highlight
the corresponding part of the visualization when you
hover, but some of them also change the state of the
visualization when you click on them. D3 makes it easy
to add event listeners into the text outside the scope of
your visualizations for a rich, interactive textual
experience.

voronoi picker Our final visualization allows you to click and drag
between two stops to see a scatter plot of delay between them. To
implement our rules for valid destinations from a source efficiently as
you drag, we used D3’s voronoi utility which takes a set of points and
renders a polygon for each where all points inside that polygon are
closest to the point. We render voronoi polygons for the set of valid
destinations every time you click and start dragging, and add our
mouseover listeners to those polygons as shown below.

screen size/responsive design We developed on 1200px wide
macbooks and optimized for that, but some people we showed this to
viewed on iPhones, some viewed on tablets, and Bill Shander viewed it
on a large, high-resolution monitor. After this feedback we pulled in
Twitter’s Bootstrap (http:/getbootstrap.com) and customized its
responsive design utilities to create 3 responsive width breakpoints:

e <990px which gets a 768px wide page

e 990-1200px which gets a 990px wide page

e >1200px which gets a 1200px wide page
We did not optimize for phones or tablets, but instead set <meta
name="viewport" content="width=768"> inour header to
ensure that phones and tablets rendered the page using the minimum
fixed width. This allowed us to not worry about rendering our
visualizations any narrower than 768px. and also looked acceptable on
arange of screen sizes.

responsive SVG using D3? This is tricky, since D3 guides you down
the path of using fixed pixel sizes for all of your elements. To make
your visualization grow or shrink with the screen size you need to
programmatically resize it. A few options are:

1 2 1 2

3 s s . 3 4

original

re-render transform=scale(2)

We use the re-render option in most places to preserve text size at
different scales, but for the turnstile heatmap which is expensive to
render, and the text feels small at the default size, we use the
transform=scale(...) option to make our text bigger as well.

scalability & performance As our visualizations grew in size and the
size of the DOM increased, we had to optimize a few things to get
acceptable performance. Adding mouseover D3 event listeners to
thousands of DOM elements took over a second, so we added a utility
to setup a single listener to the parent element that handled mouseover
events that bubbled up from its children. Calculating new attributes for
every datapoint read from a file also got slow, so we pushed those
calculations down into our pre-processing layer.

If we wanted to optimize further the first thing to try would be rendering
certain parts of our visualization involving many small DOM elements
that don’t require interaction to canvas instead of SVG. Alternatively, we
could just render those section to images and load those instead of
rendering each time.

fixing maps in place as you scroll We use scrolling as a means of
navigating large visualization, but we wanted to have some fixed
context while scrolling through a visualization taller than one page, so
we made a utility that listens on scroll events and programatically sets
the top and left css attributes of the map as you scroll to give the
effect of the map being part of the document until it reaches the top.
Since scroll events fire on iOS devices only when the scroll finishes, we
disable this entirely for iPhones and iPads.

map viz
text

next section

next section

Performance was a bit slow on firefox and safari at first, but we added a
transform: translate3d(0,0,0)CSS style which causes
browsers to use hardware acceleration when rendering animations on
an element.

as you scroll down

http://www.google.com/url?q=http%3A%2F%2Flesscss.org&sa=D&sntz=1&usg=AFQjCNGc-lHTvfJ9P4MmhuyYaqmmAp7XVA
http://www.google.com/url?q=http%3A%2F%2Fphantomjs.org%2F&sa=D&sntz=1&usg=AFQjCNGlZm-5n0EwflGB_FXNHwWFAd0CTg
http://www.google.com/url?q=http%3A%2F%2Fgetbootstrap.com&sa=D&sntz=1&usg=AFQjCNGawwtAQW1OepUfc_DsMuxrwPArpQ

Deployment

After developing the application and running it locally, we deploy to src/ ity distf senin gruntbuideonirol
GitHub Pages to make it publicly available. This is a free service *is coneat main.js flerer main.234a.js
.) ; P _— " mai ————
offered by GitHub where if you push a certain branch your your ir-}'g::_htm‘ i man.css main.b38d.css } mbtaviz github.io
repository then they will host your static website for free. We use the rest "
Grunt, a JavaScript build system for deployment as shown to the b
right. Asingle grunt deploy command from the command line .

combines and minifies our CSS and JavaScript, rewrites filenames > grunt deploy build pipeline
to prevent browsers caching old versions, and deploys the built
product to GitHub Pages.

Additionally, Grunt’s “watch” plugin provides a development mode where it builds files to a . tmp/ director and serves them on 1ocalhost then any
time you change a file, it rebuilds those files and forces the browser to reload - this is very useful when developing D3 visualizations.

Realtime Version

We experimented with a realtime visualization that polls the MBTA data feed and renders a live visualization of train conditions which is running at
http://mbta.meteor.com. Meteor is a self-contained framework that handles live-reloading, minifying, async browser push, and even provides a free
deployment service to host your demo on their hardware. This is ideal for a realtime app since our server can poll the MBTA periodically and push
updates to the connected clients instead of each client having to poll the MBTA separately.

Successes and Lessons Learned
Things we learned about the T:
e mechanical issues account for worst delays
e rush hour causes things to become much more volatile, but on average increased train frequency balances out increased transit times
between common stops
the blue line is rock-solid all the time
the orange line transit times are rock-solid but their wait times vary drastically
the red line has the most volatile transit times of all three lines
trains handle snow storms pretty well

Things we learned about building interactive data visualizations:
e small multiples don'’t always work on screens as well as on paper since screens have much lower resolution
e knowing D3 is not enough - you also need to know the full breadth of the SVG spec to know what is possible
e mockups and prototypes are good but nothing beats iterating on working code - when you have something concrete to talk to you end up with
new ideas you never would have thought of in mockups

Some positive press we received:

Boston Twitter Software
Engineer's Creation Tracks P g P ——
MBTA Traffic Speed o

ﬂ ?u.mn El.m.;ess rahburgess444 o Siroiiow
Nate Boroyan - City News Writer
" 03/26/14 @1:02pm in City News 965 “ g Natran Brown Gnathnt 2% -2 Follow
. m e b X -2 Follow
. Luc
. H bty ¥ 2 Follow
Me gusta MUCHO esta animacién #dataviz ST
g00.gl/BDILH @ Lo ol rotomns |
[£

joe meersman
dyy o rsman

.4 Patrick Hausmann
+

elega‘nt & beautiful? i think not. . A fascinating exploration of Boston's
functional--yes. thought provoking use of subway system #MBTA #Boston #d3js
publicly available data? bit.ly/10ZrtQp /cc @msb5014

mbtaviz.github.io/week-with-turmn...

References

[1] Marey, Etienne Jules. “La Méthode Graphique Dans Les Sciences Expérimentales Et Principalement En Physiologie Et En Médecine. 2. tirage
augm. d'un supplément sur le Développement de la méthode graphique par la photographie; avec 383 figures dans le texte.” Paris: G. Masson, 1885.
https://archive.org/details/lamthodegraphigO0maregoog

[2] Victor, Bret. “Magic Ink: Information Software and the Graphical Interface.” Online. 2006. http://worrydream.com/MagicInk/

[3] Nguyen, Lam. “Surfliner Weekday Ridership Pattern.” Memorandum to Chairs and Commissioners regarding Follow-up on September and
December 2008 Rail ltems. State of California Department of Transportation. January 14, 2009.

[4] metropolitian.io. “Metropolitain.io; Paris never sleeps.” Online. 2013. http://dataveyes.com/#!/en/case-studies/metropolitain

[5] Tufte, Edward. “Envisioning Information.” Graphics Press, Cheshire, CT, USA. 1990.

[6] Victor, Bret. “Up and Down the Ladder of Abstraction: A systematic approach to interactive visualization.” Online. October 2011.
http://worrydream.com/LadderOfAbstraction/

[7] prefuse.org “Prefuse | Toolkit Structure.” Online. August 2007. http://prefuse.org/doc/manual/introduction/structure/

http://www.google.com/url?q=http%3A%2F%2Fmbta.meteor.com&sa=D&sntz=1&usg=AFQjCNG1uEpu2uziTu8TTiDeideQ1fZp5A
https://www.google.com/url?q=https%3A%2F%2Farchive.org%2Fdetails%2Flamthodegraphiq00maregoog&sa=D&sntz=1&usg=AFQjCNHYG6bHgU3VM5ZgYqr7FtW7rGj2CQ
http://www.google.com/url?q=http%3A%2F%2Fworrydream.com%2FMagicInk%2F&sa=D&sntz=1&usg=AFQjCNHsZ-m_o0aL0Ce2Nk0CQF6zGvMt2Q
http://www.google.com/url?q=http%3A%2F%2Fdataveyes.com%2F%23!%2Fen%2Fcase-studies%2Fmetropolitain&sa=D&sntz=1&usg=AFQjCNHOLC1gpqMY7M8vGJopfzuVAkm4wg
http://www.google.com/url?q=http%3A%2F%2Fworrydream.com%2FLadderOfAbstraction%2F&sa=D&sntz=1&usg=AFQjCNG_UF_RxVhGb2apa1-uzFTANr9HEg
http://www.google.com/url?q=http%3A%2F%2Fprefuse.org%2Fdoc%2Fmanual%2Fintroduction%2Fstructure%2F&sa=D&sntz=1&usg=AFQjCNHYinMdSgUP8QJb0WFGRp5cdSK-fw

