Behind the Scenes Look at mbtaviz august 13th, 2014

project: mbtaviz.github.io notes: mbtaviz.github.io/medialab-handout.pdf

Mike Barry ¥ msbs014
Brian Card ¥ bmcard

Background

Visualizing MBTA Data is an interactive report of the performance and behavior of Boston's subway system over the month of February 2014. The
visualizations focus on the performance and behavior of the subway system which differs from traditional train visualizations that focus on the train
schedule. This started as the term project for a graduate course in data visualization. We collected the data in February, made mockups and
prototypes in March and built project in April. After the course was over we spent May fine-tuning it and published the end product on June 10, 2014.

The Design Process

We started by trying to understand what information would be interesting to people and then narrowing down our focus based on the data that we
could gather. We outlined three questions to focus on: When and where are the trains crowded or delayed? How do snowstorms or special
events affect the train system? How congested or delayed is my route?

The MBTA's realtime data feed provides data for the red, orange and blue lines, but not green or silver, so the report focuses on those lines. Data is
provided in JSON format and contains the current location of each train as well as the predicted time to the next stop. The real time data allowed us
to see how delayed the trains were, the MBTA also provided station entry and exit data that we used to understand where the system was
congested.

Existing Works
Below is a sampling of existing train visualizations. From left to right, Etienne-Jules Marey’s schedule from 1885 [1], Bret Victor’'s Bart Widget for trip
scheduling [2], State of California Department of Transportation report on ridership [3], metropolitan.io a visualziation of the Paris train system [4].

Surﬂmer Weekday Ridership Pattern SFY08 mm u.i““:i:“‘“k:;:‘“ s
PO UEHINOTIETO EMDArcadero.s 5. 6 o, ‘”H HHi ‘ ’ H H‘” w ‘ 2 ‘H ‘vu

115 [
mDalytw 12:38 ‘ ‘
I \1
L‘ \

5 min ago in 26 min

12:18 b 12 .

in 3 mir min] J
12:23 DalyCitw . 1254 Riken

in 10 min in 41 min e

3 b 1:02

n 18 mi 3 min

J\m

Both Marey and Victor focus on scheduling and not on train system performance. Tufte [5] provides many visualizations of train schedules, all based
off of Marey’s original design. The State of California also applies Marey’s layout and additionally encodes the number of riders on each segment
over the year. Metropolitian.io is based of of similar data to what the MBTA provides but uses different visualization techniques.

Prototypes

The project started with more than a dozen mock-ups, of these 6 to 8 made it into the prototype phase where we made samples with real data.
Prototypes helped us validate ideas and find trends in the data to explore further. Several ideas such as the congestion and delay visualization only
came after significant investment in prototypes.

Final Implementation

Mockup Prototype

TAM M SAM TAM 9AM 1AM 1PM 3PM SPM 7PM

-

(e e

4

-\
L 3
vl

T b B iy
S .455 low 4 e b '; KL
A\ ,\'l<
\\
;i)

¢] .

‘ Monday 2/3 5:50 pm 5:42 pm on Mon Feb @

lterate, lterate, lterate Layout and Publishing
We went through several iterations of each prototype before settling on the versions
shown in the report. Several other prototypes were useful in exploring the data but
couldn’t be integrated cleanly. The image on the left shows congestion and transit
times together over time but was hard to follow. The middle show delay from each line,
a first attempt at the Your Commute visualization. The one on the right shows a more
complex Your Commute visualization that we left out because it didn’t reveal much
more than a scatter plot, and the scatter plot was more obvious.

different sections. We added the interactive text and
annotations and iterated on the finished reported until we
covered all of the major areas. After we were comfortable

sk =
_'_E.‘—.'h X A Weekdays
j“r" 1 A RN Adisabled tra Red 250
| k’fﬁ Station causes
5 I =2 on the Orange Orange 320
1k) to9:15PM Blue 380
n ! | Notice how so Total 1150
—- il L

SPM 11w

542 pm| 554 ontriosimin
» 43% Siow.

Once we discovered the interesting features of our dataset we
created the narrative and organized the visualizations into the

with

the content we optimized the website and published it online.

Average Number of Tr

Satu
350
260
260
870

http://www.google.com/url?q=http%3A%2F%2Fmbtaviz.github.io&sa=D&sntz=1&usg=AFQjCNFi1HgqVsN29Bs8IAh5XIBlPKlMIw
http://www.google.com/url?q=http%3A%2F%2Fmbtaviz.github.io%2Fmedialab-handout.pdf&sa=D&sntz=1&usg=AFQjCNGaaGeRsNWn6pxGXHCJNEYpdJ6HAA
http://www.google.com/url?q=http%3A%2F%2Fmbtaviz.github.io%2F&sa=D&sntz=1&usg=AFQjCNEsXlL7d8o7u810vCvtmNJ7opk90A

Our Design Concepts

Levels of Abstraction Interaction Considered Harmful

Bret Victor's Up and Down the Ladder of Abstraction [6] influenced many = We avoided mandatory interaction as much as possible. Even though we
parts of the report. The model for our system is train locations on provide details on demand through tooltips and dynamic annotations,
subways lines and we represent this using a small map that closely chart keys and labels provide the same information statically. The fact
resembles the subway map seen on most trains that the entire visualization is readable as an image also makes it easier

www.mbta.com/schedules_and_maps/subway. to explore on mobile devices.

An abstraction one level up is the trains on . ; o

subway lines moving over time. The Marey . 7 We did compromise on this in a few places. We wanted to use small
diagram represents this abstraction, but is N multiples for the lined-up Marey and congestion diagrams, but due to the
difficult to read and interpret. Victor’s advice is g Mo s low resolution of computer screens we could not get enough detail out of
to tie these two together using lightweight ¢ '\\ a smaller version of each. Instead of small multiples we allow you to
interaction which lets the user understand the . i i hover over a particular time to change the data shown in the graphic
abstraction in terms of the model. This way the S ——

higher level behaviors and patterns that are clear in the abstraction can be R e).

more easily related back to the model that they represent. In our case it's N\ il
easy to see the delay caused by the trains with mechanical failures in the A
Marey diagram because the slope of the lines change drastically. i N . -
However it's difficult to see that the trains buch up and slow down in the .

diagram. The tight feedback loop of hovering over a time on the Marey ~ ISO: the turnstile heatmaps and your commute scatterplots were
diagram and seeing where the trains are at that time (as well as lightweight expensive to rendgr s0 we require the user to sellect which instance they
interaction to link the highlight corresponding parts on hover) reinforces ;’;ir};og(ig"s:&”n into to see more details, otherwise the page would take

the connection the levels of abstraction and helps make the Marey
diagram more understandable. L :
*Harvard W - 19,400
#®South Station T 18,100 Y '
® @ Downtown Grossing - I 15,500
o E
- -
- -
o d ”* ——
\ L] = n [I} ’
\\' o Like South Station, Downtown Cressing is primarily a work destination, but it does not experience the
commuter-rail bump in entrances in the morning
%‘" : ®Park Street e " 13,900 © *
#®North Station T = 1 13,600 Kencal/MIT to South Station

In all of these cases we start with initial default values so the user is
never presented with an empty chart prior to interacting with it.

Integrating Words, Numbers, and Graphics
Data does not always require a visualization and visualizations do not
always need to be interactive. We use sentences to show datasets with
Avoiding Administrative Debris only a few numbers, tables to explain datasets with more numbers, and
A few things you won't find in our visualization are checkboxes, sliders, or graphics to explain datasets with hundreds or thousands of numbers.
buttons (aka “administrative debris”).

In a typical weekday, trains make apprnximalaln the

red, orange, and blue lines starting at 5AM and continuing

At first we were not going to include the Marey Diagram, we just wanted to through 1AM the next mominiin Saturdays trains make(870>)

Average Number of Trips per Day
Weekdays Saturdays Sundays
Red 450 350 300
QOrange 320 260 220
260 240
870 760

. . . . 1] d days th
show trains on a map and let the user control time using a slider. We 'T"";a" °“S:" a”g ;’mah ‘ o
. i ta w i tra 1 1 Vs
realized though that the Marey Diagram could serve as an information-rich peiow are sl ripe that trsins took on the sed, arans, and bine

lines on Monday February 3 2014. Each vertical line represents a

interface for controlling the visualization while avoiding typical : :
L. 3) station, and time extends from top to bottom. Steeper lines
administrative W|dgets. indicate slower trains. This visualization was first used by

Instead of buttons with short, cryptic labels we allow you to click on or As a twist on this concept, we aiso link hovering over or clicking on
hover over linked words to control the visualization. These words are words to changing associated graphics:

inside of sentences organized into paragraphs that put the point of sae
interaction into context with the rest of the narrative. .
The table and map below breaks down February's turnstile entries and exits by station. Hover over a row in the table to highlight the corresponding circle or - 600 A41601 am
the map, or vice-versa. Click on a row in the table to show a detailed heatmap for the entrances to and exits from that station over the month. Click and drag or . Braintree bran: np over” the
several table rows to highlight a range of stations. "t fas b
You can see the busiest stations are all along the Red Linepped the list, followed close b South Station Yand thefDowntown Crossing SNext tc e20m Trunrequens insases sraed
each station are heatmaps showing entrances and exits to each station per-hour for weekdays and weekends/ ol au_can see that SOME Stations afework besins.
stationince their exits peak in the morning and entrances peak in the afternoon and that some stations e home stations Shce their entrances peak in the a8 A
oing and exit peak in the afternoon. Some stations are jugCsy al the fime> v /
Entrances and Exits per Station during February 2014 Locatons ofcch tin an te s papau
[SHarverd o - 19,400 “Trains are on the right side of the track relative to the
®South Station = 19,100 direction they are moving, a0
. ® ®Downtown Crossing - 16,900 -
®North Station T = 13,600 hous g il A5 AM :
®Central Square L 13,600
®Back Bay L 13,600
P e and we link hovering over graphics to changing the words and numbers
e = s h lain th hi
®State Street - 9,800 "
— o that explain the graphic:
- 8,900
- — 8500 ' Kendall/MIT to South Station
=z v - —
L 8.300 £
b4 . . T & 8200 - : g
- 7,700 " ~ i tansi ime.
— Sy 2
& 7,000 . ® y £,
- = 6500 . o

§

t
ach station. per-hour
G

530
u exit peaks in_the morning and @ Tuhts Modical Contor | s ™ 5,100 13 B
ces PR TH The a nm\ with entrance eNorth Quincy L 5000 * e §
he morning and exit peaks In the afternoon, and the ® Androw Square 4900 »” e §=
- bt . i i
N " ps » N g
. ! 1 H

pm. Hover over the diagram to the right to display trains at a

Locations of each train on the red, biue, and orange lines at 5:59 ave every 3 10 10 minutes from Kendall/MIT going to South Station, The tri
different time.

http://www.google.com/url?q=http%3A%2F%2Fwww.mbta.com%2Fschedules_and_maps%2Fsubway%2F&sa=D&sntz=1&usg=AFQjCNFbFbWhezIFIWsXnQ_Nj6lnnCtUog

Show Me What’s Interesting
We spent a lot of time analyzing the data to pick out the interesting points and showed them off with liberal use of annotations. This lets people who

spend a short amount of time playing with the visualization get the highlights while users who spend more time can explore and dig into the details. If
there are anomalies in the data explaining the cause of the anomalies is an easy way to show the viewer something interesting

1o |od o o e ot

What We Didn’t Do

We wanted to show how crowded each individual train was and also to come to a sweeping conclusion about the train system, but the data wasn'’t
there to do either, so we ended up just showing the data. We also wanted a “grand visualization” that showed all of the variables together in a single
view, but we couldn’t quite pull that off. Instead we went with separate views, each of which showcased a particular aspect of the data.

Gathering Data

We wrote simple bash scripts and scheduled them using cron jobs on old laptops in parallel for the
month of February to get the realtime data files. We also pulled the MBTA GTFS zip file which

HTML/CSS/JS
in the browser

contained the scheduling data for all trips and worked with a contact at the MBTA to get per-minute
entry and exit counts at each station from their turnstile data.

Merging and Cleaning the Data

We experimented with python, scala, and node.js for data pre-processing. Python was an order of
magnitude slower than scala or node.js which were comparable. Since only one of us was
comfortable with Scala and we both knew JavaScript, we chose node.js for continued work. We
found the bulk of the time spent running our scripts was from opening files from disk (12 files per
minute of gathered data) so our preprocessing scripts merged the two datasets, removed redundant
data, and wrote the data out to hourly gzipped data files with a single json blob per line, for example L
redline/yyyy/mm/dd/hh.json.gz. This gave the optimal performance for downstream
feature-extraction scripts, while still allowing us to process date ranges at hour granularity.

curl redline > redline.json d3.js
n

Raw Data ———» Clean Data ———— Visualization Data
20GB 200MB < 1MB gzipped

nede merge_and_clean.is ode extract_featur:

Visualization Pipeline

Weekends

Presidont's Day Mike's Laptop died

Extracting Visualization Data Files ‘
We wrote a node.js script for to generate a minimal JSON data file for each visualization embedded

within our larger web page with the goals of minimizing file size and reducing the amount of work done HmylmwmVommmmayand o

in the browser at runtime. Almost every script ran inside a reusable helper that took a date range,

opened the necessary . json. gz files and called a function with each line of that file.

Building the Web App

The web application is a single HTML file with descriptions and explanation surrounding placeholder empty <div> elements for our visualizations.
Our JavaScript files load at the end, read in the data files, render SVG dynamically into the placeholders, and setup listeners to handle interaction.

We used a few open source projects to make development easier including D3.js (d3js.org) for mapping our data to DOM elements that create the
visualization, underscore.js (underscorejs.org) for collection manipulation, jQuery (jguery.com) for additional DOM manipulation utilities, moment.js
(momentjs.com) for date and time formatting, and d3-tip (labratrevenge.com/d3-tip) for creating simple tooltips. Below we describe how we solved

several problems along the way. See the github repo for the full details (github.com/mbtaviz/mbtaviz.github.io)

decoupling the visualizations We wanted to make sure our
visualizations did not interact in undesired ways when placed on the same

data loading Since we needed to load many data files and render
several different visualizations we created a utility that requests several

page. We used the less CSS preprocessor (lesscss.org), which allowed
us to nest selectors and ensure that all rules for a visualization would

apply only to that section.. Each visualization got its own copy of the data it

needed and code had to be explicitly put into a common location to share
between visualizations.

responsive SVG using D3? This is tricky, since D3 guides you down the
path of using fixed pixel sizes for all of your elements. To make your
visualization grow or shrink with the screen size you need to
programmatically resize it. A few options are:

1 2 1 2

3 4 s s 3 4

original

re-render transform=scale(2)

We use the re-render option in most places to preserve text size at

different scales, but for the turnstile heatmap which is expensive to render,

and the text feels small at the default size, we use the transform=scale(...)
option to make our text bigger as well.

files asynchronously and coordinates progress and completion events,
bubbling them up to user-defined listeners

VIZ.requiresData ([

'json!data/filel.json', 'json!data/file2.json’
1) .progress (function (percent) {

d3.selectAll (".progress") .text ('Loading data...
}) .onerror (function () {

d3.selectAll (".progress") .text ('Failed to load data’);
}) .done (function (dataFromFilel, dataFromFile2) {
// use data
1)

' + percent + '%');

screen size/responsive design We developed on 1200px wide
macbooks and optimized for that, but some people we showed this to
viewed on iPhones, some viewed on tablets, and Bill Shander viewed it
on a large, high-resolution monitor. After this feedback we pulled in
Twitter's Bootstrap (getbootstrap.com) and customized its responsive
design utilities to create 3 responsive width breakpoints: 789px, 990px,
and 1200px. We set <meta name="viewport"
content="width=768"> in our header to ensure that phones and
tablets rendered the page using the minimum fixed width. This allowed
us to not worry about rendering our visualizations any narrower than
768px and also looked acceptable on a range of screen sizes.

http://www.google.com/url?q=http%3A%2F%2Fd3js.org&sa=D&sntz=1&usg=AFQjCNEOj7G19Lrx2IKZoyjb9FSuVi1jig
http://www.google.com/url?q=http%3A%2F%2Funderscorejs.org%2F&sa=D&sntz=1&usg=AFQjCNHlk0FMhgG9fCN2yhN-Y-3Si9rYvA
http://www.google.com/url?q=http%3A%2F%2Fjquery.com&sa=D&sntz=1&usg=AFQjCNFPZE_S2dKTU1HWh6m5dRnO4YBYRg
http://www.google.com/url?q=http%3A%2F%2Fmomentjs.com&sa=D&sntz=1&usg=AFQjCNGzisk0XrYIioLhWtyWLUwJVjCSAw
http://www.google.com/url?q=http%3A%2F%2Flabratrevenge.com%2Fd3-tip%2F&sa=D&sntz=1&usg=AFQjCNFSY2h0tTRsgKrcsWN2iC1cylHsHA
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fmbtaviz%2Fmbtaviz.github.io&sa=D&sntz=1&usg=AFQjCNHIL5dKPjRmhgjxw9V5EhCSwGecyQ
http://www.google.com/url?q=http%3A%2F%2Flesscss.org&sa=D&sntz=1&usg=AFQjCNGc-lHTvfJ9P4MmhuyYaqmmAp7XVA
http://www.google.com/url?q=http%3A%2F%2Fgetbootstrap.com&sa=D&sntz=1&usg=AFQjCNGawwtAQW1OepUfc_DsMuxrwPArpQ
http://www.google.com/url?q=http%3A%2F%2Fgetbootstrap.com&sa=D&sntz=1&usg=AFQjCNGawwtAQW1OepUfc_DsMuxrwPArpQ

browser compatibility Underscore, D3, and jQuery
work across modern browsers and we used an es5/6
shim to let us use newer language features in older
browsers. Still, ie8 does not support SVG. Instead of
bending over backwards to support them, we used
phantomjs (phantomijs.org) to render our page to a png
file and show that instead.

<!--[if 1t IE 9]>
 —

<![endif]-->

<!--[1if gte IE 9]><!-->
The visualization

<!-=<![endif]-->

—eeei

scalability & performance As our visualizations grew in
size and the number of DOM nodes increased, we had
to optimize a few things to get acceptable performance.
Adding mouseover D3 event listeners to thousands of
DOM elements was slow, so instead we added a single
listener to the parent element that handled mouseover
events bubbled up from its children. We pushed all
calculations for each data point into the pre-processing
step to avoid slowing down the browser.

To optimize further the first thing to try would be
rendering parts of our visualization involving many small
DOM elements that don't require interaction to canvas
instead of SVG. Alternatively, we could just render those
section to images and load those instead of rendering
each time.

fonts We chose Helvetica for our headings to match the
MBTA'’s sign style. For our body text we wanted to go
with Garamond but after some reading learned that
Georgia is better since it is optimized for computer
screens, whereas Garamond is optimized for print.

Conclusions about the T

voronoi picker Our final visualization allows you to click and drag between
two stops to see a scatter plot of delay between them. To implement our
rules for valid destinations from a source efficiently as you drag, we used
D3’s voronoi utility which takes a set of points and renders a polygon for
each where all points inside that polygon are closest to the point. We render
voronoi polygons for the set of valid destinations every time you click and
start dragging, and add our mouseover listeners to those polygons as
shown below.

fixing maps in place as you scroll We wanted some fixed context while
scrolling to navigate the visualization, so we made a utility that listens on
scroll events and programmatically sets the top and 1eft css attributes of
the map as you scroll to make the map appear to stay fixed to the top. Since
scroll events fire on iOS devices only when the scroll finishes, we disable
this entirely for iPhones and iPads.

map viz

text o e

next section

map

next section

Performance was slow on firefox and safari at first, but we added
transform: translate3d(0,0,0)CSS style which causes browsers
to hardware accelerate animations and the improvement was noticeable

as you scroll down

Through our analysis we found that mechanical issues account for the worst, most unpredictable delays. Localized events like hockey and
basketball games cause temporary spikes in ridership but have very little effect on delay. Snow storms drastically reduce ridership, which improves
performance more than the weather hurts it. Neglecting these sporadic events, increased transit times around rush-hour are mostly offset by the fact
that trains run more frequently so you need to spend less time waiting for the next train.

Each line has its own unique characteristics of ridership and delay. The blue line experiences lowest ridership and also delay. The orange line has
rock-solid transit times but wait times vary much more drastically. The red line is the busiest and has the worst delays.

The MBTA gave feedback that this aligns with what they know about the system. They explained that the cause of congestion-related delay is the
time it takes to close the subway doors at each stop as people scramble to squeeze into an over-crowded train. The tracks are divided into zones
and only one train is allowed in each zone at a time so when one train stays at a station for too long it has ripple effects on trains close behind it.

Lessons Learned about Building Interactive Data Visualizations

While trying to understand our large dataset, we avoided using complex statistical techniques to over-reduce our data and instead did the minimal
reduction necessary to fit it into high-resolution images. When we could see the data and all of its intricacies, our eyes drew their own conclusions.

Mockups and prototypes helped us formulate ideas but we found that nothing beat iterating on working code. When we had something concrete to
talk to we came up with new ideas that we would never have thought of in a mockup or prototype. We experienced first hand that higher levels of
abstraction allow for powerful reasoning, but you need to start at a level the audience is used to. We had success using words, numbers, and
images to explain our data with no preference towards one or the other. We mostly avoided gratuitous interaction and color but found that subtle use
of both allowed us to better link words to images. We wanted to use more small multiples, but had to compromise since the resolution of computer
screens is still much lower than paper and instead used interaction to change a single larger graphic. When necessary, lightweight interaction with
words and images served as a much richer alternative to typical administrative debris like buttons, checkboxes and sliders.

References

[1] Marey, Etienne Jules. “La Méthode Graphique Dans Les Sciences Expérimentales Et Principalement En Physiologie Et En Médecine. 2. tirage
augm. d'un supplément sur le Développement de la méthode graphique par la photographie; avec 383 figures dans le texte.” Paris: G. Masson, 1885.

archive.org/details/lamthodegraphig00Omaregoog

[2] Victor, Bret. “Magic Ink: Information Software and the Graphical Interface.” Online. 2006. worrydream.com/Magiclnk/

[3] Nguyen, Lam. “Surfliner Weekday Ridership Pattern.” Memorandum to Chairs and Commissioners regarding Follow-up on September and
December 2008 Rail Items. State of California Department of Transportation. January 14, 2009.

[4] metropolitian.io. “Metropolitain.io; Paris never sleeps.” Online. 2013. dataveyes.com/#!/en/case-studies/metropolitain

[5] Tufte, Edward. “Envisioning Information.” Graphics Press, Cheshire, CT, USA. 1990.

[6] Victor, Bret. “Up and Down the Ladder of Abstraction: A systematic approach to interactive visualization.” Online. October 2011.

worrydream.com/LadderOfAbstraction/

http://www.google.com/url?q=http%3A%2F%2Fphantomjs.org%2F&sa=D&sntz=1&usg=AFQjCNGlZm-5n0EwflGB_FXNHwWFAd0CTg
https://www.google.com/url?q=https%3A%2F%2Farchive.org%2Fdetails%2Flamthodegraphiq00maregoog&sa=D&sntz=1&usg=AFQjCNHYG6bHgU3VM5ZgYqr7FtW7rGj2CQ
http://www.google.com/url?q=http%3A%2F%2Fworrydream.com%2FMagicInk%2F&sa=D&sntz=1&usg=AFQjCNHsZ-m_o0aL0Ce2Nk0CQF6zGvMt2Q
http://www.google.com/url?q=http%3A%2F%2Fdataveyes.com%2F%23!%2Fen%2Fcase-studies%2Fmetropolitain&sa=D&sntz=1&usg=AFQjCNHOLC1gpqMY7M8vGJopfzuVAkm4wg
http://www.google.com/url?q=http%3A%2F%2Fworrydream.com%2FLadderOfAbstraction%2F&sa=D&sntz=1&usg=AFQjCNG_UF_RxVhGb2apa1-uzFTANr9HEg

